Estimating Activity at Multiple Scales using Spatial Abstractions

نویسندگان

  • Majd Hawasly
  • Florian T. Pokorny
  • Subramanian Ramamoorthy
چکیده

Autonomous robots operating in dynamic environments must maintain beliefs over a hypothesis space that is rich enough to represent the activities of interest at different scales. This is important both in order to accommodate the availability of evidence at varying degrees of coarseness, such as when interpreting and assimilating natural instructions, but also in order to make subsequent reactive planning more efficient. We present an algorithm that combines a topology-based trajectory clustering procedure that generates hierarchically-structured spatial abstractions with a bank of particle filters at each of these abstraction levels so as to produce probability estimates over an agent’s navigation activity that is kept consistent across the hierarchy. We study the performance of the proposed method using a synthetic trajectory dataset in 2D, as well as a dataset taken from AIS-based tracking of ships in an extended harbour area. We show that, in comparison to a baseline which is a particle filter that estimates activity without exploiting such structure, our method achieves a better normalised error in predicting the trajectory as well as better time to convergence to a true class when compared against ground truth.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

کاربرد روش‏های رگرسیونی و شبکه‏های عصبی به‌ منظور تخمین هدایت هیدرولیکی اشباع خاک منطقه زاگرس مرکزی

With the advent of advanced geographical informational systems (GIS) and remote sensing technologies in recent years, topographic (elevation, slope, and aspect) and vegetation attributes are routinely available from digital elevation models (DEMs) and normalized difference vegetation index (NDVI) at different spatial (watershed, regional) scales. This study explores the use of topographic and v...

متن کامل

Spatial variability of forest growing stock using geostatistics in the Caspian region of Iran

Estimating the amount of variation due to spatial dependence at different scales provides a basis for designing effective experiments. Accurate knowledge of spatial structures is needed to inform silvicultural guidelines and management decisions for long term sustainability of forests. Furthermore, geostatistics is a useful tool to describe and draw map the spatial variability and estimation o...

متن کامل

Non-destructive Method for Estimating Biomass of Plants Using Digital Camera Images

Abstract Plant growth and biomass assessments are required in production and research. Such assessments are followed by major decisions (e.g., harvest timing) that channel resources and influence outcomes. In research, resources required to assess crop status affect other aspects of experimentation and, therefore, discovery. Destructive harvests are important because they influence treatment s...

متن کامل

BioModel engineering for multiscale Systems Biology.

We discuss some motivational challenges arising from the need to model and analyse complex biological systems at multiple scales (spatial and temporal), and present a biomodel engineering framework to address some of these issues within the context of multiscale Systems Biology. Our methodology is based on a structured family of Petri net classes which enables the investigation of a given syste...

متن کامل

Validation of Walk Score® for Estimating Neighborhood Walkability: An Analysis of Four US Metropolitan Areas

Neighborhood walkability can influence physical activity. We evaluated the validity of Walk Score(®) for assessing neighborhood walkability based on GIS (objective) indicators of neighborhood walkability with addresses from four US metropolitan areas with several street network buffer distances (i.e., 400-, 800-, and 1,600-meters). Address data come from the YMCA-Harvard After School Food and F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1607.07311  شماره 

صفحات  -

تاریخ انتشار 2016